Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.986
Filtrar
1.
Osteoporos Int ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587675

RESUMO

A knowledge gap exists in associating later life's osteoporotic fracture and middle adulthood's BMI trajectories. We observed an association showing those transitioning from overweight to normal weight face a higher fracture risk in late adulthood, emphasizing the potential benefits of maintaining a stable BMI to reduce late-life fractures. PURPOSE: Numerous studies on the relationship between obesity and fractures have relied on body mass index (BMI) at a single time point, yielding inconclusive results. This study investigated the association of BMI trajectories over middle adulthood with fracture risk in late adulthood. METHODS: This prospective cohort study analyzed 1772 qualified participants from the Framingham Original Cohort Study, with 292 (16.5%) incident fractures during an average of 17.1-year follow-up. We constructed BMI trajectories of age 35-64 years based on latent class mixed modeling and explored their association with the risk of fracture after 65 years using the Cox regression. RESULTS: The result showed that compared to the BMI trajectory Group 4 (normal to slightly overweight; see "Methods" for detailed description), Group 1 (overweight declined to normal weight) had a higher all-fracture risk after age 65 (hazard ratio [HR], 2.22, 95% CI, 1.13-4.39). The secondary analysis focusing on lower extremity fractures (pelvis, hip, leg, and foot) showed a similar association pattern. CONCLUSIONS: This study suggested that people whose BMI slightly increased from normal weight to low-level overweight during 30 years of middle adulthood confer a significantly lower risk of fracture in later life than those whose BMI declined from overweight to normal weight. This result implies the potentially beneficial effects of avoiding weight loss to normal weight during middle adulthood for overweight persons, with reduced fracture risk in late life.

2.
Mol Cell Biochem ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622439

RESUMO

Lipids are the key component of all membranes composed of a variety of molecules that transduce intracellular signaling and provide energy to the cells in the absence of nutrients. Alteration in lipid metabolism is a major factor for cancer heterogeneity and a newly identified cancer hallmark. Reprogramming of lipid metabolism affects the diverse cancer phenotypes, especially epithelial-mesenchymal transition (EMT). EMT activation is considered to be an essential step for tumor metastasis, which exhibits a crucial role in the biological processes including development, wound healing, and stem cell maintenance, and has been widely reported to contribute pathologically to cancer progression. Altered lipid metabolism triggers EMT and activates multiple EMT-associated oncogenic pathways. Although the role of lipid metabolism-induced EMT in tumorigenesis is an attractive field of research, there are still significant gaps in understanding the underlying mechanisms and the precise contributions of this interplay. Further study is needed to clarify the specific molecular mechanisms driving the crosstalk between lipid metabolism and EMT, as well as to determine the potential therapeutic implications. The increased dependency of tumor cells on lipid metabolism represents a novel therapeutic target, and targeting altered lipid metabolism holds promise as a strategy to suppress EMT and ultimately inhibit metastasis.

3.
Nanoscale ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38623897

RESUMO

Nonlinear absorption of metal-halide perovskite nanocrystals (NCs) makes them an ideal candidate for applications which require multiphoton-excited photoluminescence. By doping perovskite NCs with lanthanides, their emission can be extended into the near-infrared (NIR) spectral region. We demonstrate how the combination of Yb3+ doping and bandgap engineering of cesium lead halide perovskite NCs performed by anion exchange (from Cl- to Br-) leads to efficient and tunable emitters that operate under two-photon excitation in the NIR spectral region. By optimizing the anion composition, Yb3+-doped CsPbClxBr3-x NCs exhibited high values of two-photon absorption cross-section reaching 2.3 × 105 GM, and displayed dual-band emission located both in the visible (407-493 nm) and NIR (985 nm). With a view of practical applications of bio-visualisation in the NIR spectral range, these NCs were embedded into silica microspheres which were further wrapped with amphiphilic polymer shells to ensure their water-compatibility. The resulting microspheres with embedded NCs could be easily dispersed in both toluene and water, while still exhibiting a dual-band emission in visible and NIR under both one- and two-photon excitation conditions.

4.
Medicine (Baltimore) ; 103(15): e37805, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38608049

RESUMO

The prevalence of myopia among children and adolescents is currently rising to alarming levels (>80%) in China. This study used several routinely collected demographic factors to quantify myopia and glass-wearing rates for primary and secondary school students. We identified myopia risk factors and proposed new aspects for early intervention. This study was a cross-sectional survey of myopia and glass-wearing rates for students (6-18 years old) in Yantai, China. We collected both vision (vision acuity [VA] and spherical equivalence [SE]) and glass-wearing information to establish respective logistic models for quantifying myopia and glass-wearing rate. We further propose a joint decision region (VA, SE, age) to guide early intervention. Among 10,276 children, 63% had myopia (65% wore glasses). The prevalence of myopia increases with age and levels off during adulthood. Females had a higher overall prevalence rate than males (P < .001). The rural age mode (≈15.5) is about 2 years larger than the urban age (≈13.5) for myopia students. For the myopia rate, in the age ≤14.5, the linear age effect was significant (odds ratio [OR] = 1.73, P < .0001), males had a significant negative baseline effect at the start of schooling (vs. females) (OR = 0.68, P < .0001), and the urban group had a significant positive baseline effect (vs. rural) (OR = 1.39, P < .0001). The correlation between VA and SE increases with age and has a directional shift (from negative to positive) at ages 8 to 9. For the glass-wearing rate, age had a significant positive effect (OR = 1.25, P < .0001), VA had a significant negative effect (OR = 0.002, P < .0001), and body mass index had a slightly significant positive effect (OR = 1.02, P = .03). Urban female have a higher myopia rate than rural male at the start of schooling, and vocational high school has improved vision upon high school. Body mass index was not a significant factor for myopia. The myopia rate model is specific to age range (separated at 14.5 years old). Students of lower ages are less likely to wear glasses for correction, and this may require intervention. The temporal age-specific (VA, SE) correlations and joint distributions strengthen the speculation in the literature that age 8 to 9 is a critical intervention period and motivates us to propose a rigorous intervention decision region for (age, VA, and SE) which mainly applies for this tight age period.


Assuntos
Miopia , Adolescente , Criança , Feminino , Masculino , Humanos , Adulto , Pré-Escolar , Estudos Transversais , Miopia/epidemiologia , Miopia/terapia , Acuidade Visual , China/epidemiologia , Fatores Etários
5.
BMC Complement Med Ther ; 24(1): 145, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575994

RESUMO

BACKGROUND: Ginger is a common aromatic vegetable with a wide range of functional ingredients and considerable medicinal and nutritional properties. Numerous studies have shown that ginger and its active ingredients have suppressive effects on manifold tumours, including ovarian cancer (OC). However, the molecular mechanism by which ginger inhibits OC is not clear. The aim of this study was to investigate the function and mechanism of ginger in OC. METHODS: The estimation of n6-methyladenosine (m6A) levels was performed using the m6A RNA Methylation Quantification Kit, and RT-qPCR was used to determine the expression of m6A-related genes and proteins. The m6A methylationome was detected by MeRIP-seq, following analysis of the data. Differential methylation of genes was assessed utilizing RT-qPCR and Western Blotting. The effect of ginger on SKOV3 invasion in ovarian cancer cells was investigated using the wound healing assay and transwell assays. RESULTS: Ginger significantly reduced the m6A level of OC cells SKOV3. The 3'UTR region is the major site of modification for m6A methylation, and its key molecular activities include Cell Adhesion Molecules, according to meRIP-seq results. Moreover, it was observed that Ginger aids significantly in downregulating the CLDN7, CLDN11 mRNA, and protein expression. The results of wound healing assay and transwell assay showed that ginger significantly inhibited the invasion of OC cells SKOV3. CONCLUSIONS: Ginger inhibits ovarian cancer cells' SKOV3 invasion by regulating m6A methylation through CLDN7, CLDN11, and CD274.


Assuntos
Neoplasias Ovarianas , Gengibre , Feminino , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , 60697 , Antígeno B7-H1 , Claudinas
6.
Sci Total Environ ; 927: 172159, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38575032

RESUMO

Sediment contamination by heavy metals is a pressing environmental concern. While in situ metal stabilization techniques have shown promise, a great challenge remains in the simultaneous immobilization of multi-metals co-existing in contaminated sediments. This study aims to address this challenge by developing a practical method for stabilizing multi-metals by hydroxyapatite and calcium peroxide (HAP/CaO2) dosing strategies. Results showed that dosing 15.12 g of HAP/CaO2 at a ratio of 3:1 effectively transformed labile metals into stable fractions, reaching reaction kinetic equilibrium within one month with a pseudo-second-order kinetic (R2 > 0.98). The stable fractions of Nickel (Ni), Chromium (Cr), and lead (Pb) increased by approximately 16.9 %, 26.7 %, and 21.9 %, respectively, reducing heavy metal mobility and ensuring leachable concentrations complied with the stringent environmental Class I standard. Mechanistic analysis indicated that HAP played a crucial role in Pb stabilization, exhibiting a high rate of 0.0176 d-1, while Cr and Ni stabilization primarily occurred through the formation of hydroxide precipitates, as well as the slowly elevated pH (>8.5). Importantly, the proposed strategy poses a minimal environmental risk to benthic organisms exhibits almost negligible toxicity towards Vibrio fischeri and the Chironomus riparius, and saves about 71 % of costs compared to kaolinite. These advantages suggest the feasibility of HAP/CaO2 dosing strategies in multi-metal stabilization in contaminated sediments.


Assuntos
Durapatita , Peróxidos , Poluentes Químicos da Água , Durapatita/química , Poluentes Químicos da Água/análise , Peróxidos/química , Metais Pesados , Sedimentos Geológicos/química , Recuperação e Remediação Ambiental/métodos
7.
J Ethnopharmacol ; 329: 118158, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38614263

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Trichosanthis pericarpium (TP; Gualoupi, pericarps of Trichosanthes kirilowii Maxim) has been used in traditional Chinese medicine (TCM) to reduce heat, resolve phlegm, promote Qi, and clear chest congestion. It is also an essential herbal ingredient in the "Gualou Xiebai" formula first recorded by Zhang Zhongjing (from the Eastern Han Dynasty) in the famous TCM classic "Jin-Guì-Yào-Lüe" for treating chest impediments. According to its traditional description, Gualou Xiebai is indicated for symptoms of chest impediments, which correspond to coronary heart diseases (CHD). AIM OF THE STUDY: This study aimed to identify the antithrombotic compounds in Gualoupi for the treatment of CHD. MATERIALS AND METHODS: A CHD rat model was established with a combination of high-fat diet and isoproterenol hydrochloride (ISO) administration via subcutaneous multi-point injection in the back of the neck. This model was used to evaluate the antithrombotic effect of two mainstream cultivars of TP ("HaiShi GuaLou" and "WanLou") by analyzing the main components and their effects. Network pharmacology, molecular docking-based studies, and a zebrafish (Danio rerio) thrombosis model induced by phenylhydrazine was used to validate the antithrombosis components of TP. RESULTS: TP significantly reduced the body weight of the CHD rats, improved myocardial ischemia, and reduced collagen deposition and fibrosis around the infarcted tissue. It reduced thrombosis in a dose-dependent manner and significantly reduced inflammation and oxidative stress damage. Cynaroside, isoquercitrin, rutin, citrulline, and arginine were identified as candidate active TP compounds with antithrombotic effects. The key potential targets of TP in thrombosis treatment were initially identified by molecular docking-based analysis, which showed that the candidate active compounds have a strong binding affinity to the potential targets (protein kinase C alpha type [PKCα], protein kinase C beta type [PKCß], von Willebrand factor [vWF], and prostaglandin-endoperoxide synthase 1 [PTGS1], fibrinogen alpha [Fga], fibrinogen beta [Fgb], fibrinogen gamma [Fgg], coagulation factor II [F2], and coagulation factor VII [F7]). In addition, the candidate active compounds reduced thrombosis, improved oxidative stress damage, and down-regulated the expression of thrombosis-related genes (PKCα, PKCß, vWF, PTGS1, Fga, Fgb, Fgg, F2, and F7) in the zebrafish model. CONCLUSION: Cynaroside, isoquercitrin, rutin, citrulline, and arginine were identified as the active antithrombotic compounds of TP used to treat CHD. Mechanistically, the active compounds were found to be involved in oxidative stress injury, platelet activation pathway, and complement and coagulation cascade pathways.

8.
Anal Chem ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38621112

RESUMO

Photonic crystals with specific wavelengths can realize surface-enhanced excitation and emission intensities of fluorophores and enhance the fluorescence signals of fluorescent molecules. Herein, stretchable photonic crystals with good mechanochromic properties provide continuously adjustable forbidden wavelengths by stretching to change the lattice spacing, with reflectance peaks blue-shifted up to 110 nm to match indicators of different wavelengths and produce differentiated optical enhancement effects. Glycoproteins are significantly identified as clinical markers. However, the wide participation of glycoproteins in various life processes poses enormous complexity and critical challenges for rapid, facile, high-throughput, and accurate clinical analysis or health assessment. In this work, we proposed a stretchable photonic crystal-assisted glycoprotein identification approach for early ovarian cancer diagnosis. Stretchable photonic crystals can provide rich optical information to efficiently identify glycoproteins in complex matrices. A double-indicator fluorescence sensor was designed to respond to the protein trunk and oligosaccharide segment of glycoproteins separately for improved recognition accuracy. Seven typical glycoproteins could be discriminated from proteins, saccharides, or mixture interferents. Clinical ovarian cancer samples for early, intermediate, and advanced ovarian cancer and healthy subjects were verified with 100% accuracy. This strategy of stretchable photonic crystal-assisted glycoprotein identification provides an effective method for accurate, rapid ovarian cancer diagnosis and timely clinical treatment.

9.
Chem Biodivers ; : e202400507, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38606561

RESUMO

Three new C10 and C12 aliphatic δ-lactones (1-3), three new fatty acid methyl esters (4-6), and eight known compounds (7-14) were isolated from the marine Aureobasidium sp. LUO5. Their structures were established by detailed analyses of the NMR, HRESIMS, optical rotation, and ECD data. All isolates were tested for their inhibitory effects on nitric oxide production in LPS-induced BV-2 cells. Notably, compound 4 displayed the strongest inhibitory effect with the IC50 value of 120.3 nM.

10.
Cell Signal ; 119: 111170, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38604344

RESUMO

Cadmium (Cd) is an environmental risk factor of cardiovascular diseases. Researchers have found that Cd exposure causes energy metabolic disorders in the heart decades ago. However, the underlying molecular mechanisms are still elusive. In this study, male C57BL/6 J mice were exposed to cadmium chloride (CdCl2) through drinking water for 4 weeks. We found that exposure to CdCl2 increased glucose uptake and utilization, and disrupted normal metabolisms in the heart. In vitro studies showed that CdCl2 specifically increased endothelial glucose uptake without affecting cardiomyocytic glucose uptake and endothelial fatty acid uptake. The glucose transporter 1 (GLUT1) as well as its transcription factor HIF1A was significantly increased after CdCl2 treatment in endothelial cells. Further investigations found that CdCl2 treatment upregulated HIF1A expression by inhibiting its degradation through ubiquitin-proteasome pathway, thereby promoted its transcriptional activation of SLC2A1. Administration of HIF1A small molecule inhibitor echinomycin and A-485 reversed CdCl2-mediated increase of glucose uptake in endothelial cells. In accordance with this, intravenous injection of echinomycin effectively ameliorated CdCl2-mediated metabolic disruptions in the heart. Our study uncovered the molecular mechanisms of Cd in contributing cardiac metabolic disruption by inhibiting HIF1A degradation and increasing GLUT1 transcriptional expression. Inhibition of HIF1A could be a potential strategy to ameliorate Cd-mediated cardiac metabolic disorders and Cd-related cardiovascular diseases.

11.
Int J Surg ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38608032

RESUMO

BACKGROUND: Whether health inequalities of disease burden and medical utilization exist by ethnicity in Asian breast cancer (BC) patients remains unclear. We aim to measure ethnic disparities in disease burden and utilization among Mongolian and Han female breast cancer patients in China. MATERIALS AND METHODS: Based on data extracted from Inner Mongolia Regional Health Information Platform, a retrospective cohort study was established during 2012-2021. Disease burden including incidence, 5-year prevalence, mortality, survival rate, and medical cost were analyzed and compared between Han and Mongolian patients. RESULTS: A total of 34,878 female patients (mean [SD] age, 52.34 [10.93] years) were included among 18.19 million Chinese, and 4,315 [12.03%] participants were Mongolian. Age-standardized rates of incidence are 32.68 (95% CI: 20.39-44.98) per 100,000. Higher age-specific incidence and 5-year prevalence were observed in Mongolian than in Han. The cost of breast cancer annually per capita was significantly lower for Mongolian than Han in FBC ($1,948.43 [590.11-4 776.42] vs. $2,227.35 [686.65-5,929.59], P<0.001). Mongolian females showed higher all-cause mortality (30.92, [95% CI: 28.15-33.89] vs. 27.78, [95% CI: 26.77-28.83] per 1,000, P=0.036) and breast cancer-specific mortality (18.78, [95% CI: 16.64-21.13] vs. 15.22, [95% CI: 14.47-16.00] per 1,000, P=0.002) than Han females. After adjusting covariates, Mongolian were associated with increased all-cause mortality (HR, 1.21, [95% CI, 1.09-1.34]; P<0.001) and breast cancer-specific mortality (HR, 1.31, [95% CI, 1.14-1.49]; P<0.001). CONCLUSION: The findings of this cohort study highlight a higher level of disease burden with unmet medical demand in Mongolian patients, suggesting that more practical efforts should be made for the minority. Further research is needed to explore the concrete mechanisms of the disparities as well as eliminate health disproportion.

12.
IEEE Trans Radiat Plasma Med Sci ; 8(3): 269-276, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38654812

RESUMO

We investigate a highly multiplexing readout for depth-of-interaction (DOI) and time-of-flight PET detector consisting of an N×N crystals whose light outputs at the front and back ends are detected by using silicon photomultipliers (SiPM). The front N×N SiPM array is read by using a stripline (SL) configured to support discrimination of the row position of the signal-producing crystal. The back N×N SiPM array is similarly read by an SL for column discrimination. Hence, the detector has only four outputs. We built 4×4 and 8×8 detector modules (DM) by using 3.0×3.0×20 mm3 lutetium-yttrium oxyorthosilicates. The outputs were sampled and processed offline. For both DMs, crystal discrimination was successful. For the 4×4 DM, we obtained an average energy resolution (ER) of 14.1%, an average DOI resolution of 2.5 mm, a non DOI-corrected coincidence resolving time (CRT), measured in coincidence with a single-pixel reference detector, of about 495 ps. For the 8×8 DM, the average ER, average DOI resolution and average CRT were 16.4%, 2.9 mm, and 641 ps, respectively. We identified the intercrystal scattering as a probable cause for the CRT deterioration when the DM was increased from 4×4 to 8×8.

13.
Adv Mater ; : e2402379, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38655900

RESUMO

Circulating tumor cells (CTCs) detection presents significant advantages in diagnosing liver cancer due to its non-invasiveness, real-time monitoring, and dynamic tracking. However, the clinical application of CTCs-based diagnosis is largely limited by the challenges of capturing low-abundance CTCs within a complex blood environment while ensuring them alive. Here we design an ultra-strong ligand, L-histidine-L-histidine (HH), specifically targeting sialylated glycans on the surface of CTCs. Further HH is integrated into a cell-imprinted polymer, constructing a hydrogel with precise CTCs imprinting, high elasticity, satisfactory blood-compatibility, and robust anti-interference capacities. These features endow the hydrogel with excellent capture efficiency (>95%) for CTCs in peripheral blood, as well as the ability to release CTCs controllably and alive. Clinical tests substantiate the accurate differentiation between liver cancer, cirrhosis, and healthy groups using this method. The remarkable diagnostic accuracy (94%), lossless release of CTCs, material reversibility, and cost-effectiveness (6.68 dollars per sample) make the HH-based hydrogel a potentially revolutionary technology for liver cancer diagnosis and single-cell analysis. This article is protected by copyright. All rights reserved.

14.
BMC Pharmacol Toxicol ; 25(1): 30, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38650035

RESUMO

BACKGROUND: Calycosin, a flavonoid compound extracted from Astragalus membranaceus, has shown anti-asthma benefits in house dust mite-induced asthma. Recent studies have suggested that innate-type cells, including group 2 innate lymphoid cells (ILC2s) and macrophages, serve as incentives for type 2 immunity and targets for drug development in asthma. This work focuses on the effects of calycosin on the dysregulated ILC2s and macrophages in allergic asthma. METHODS: In vivo, the asthmatic mouse model was established with ovalbumin (OVA) sensitization and challenge, and calycosin was intraperitoneally administered at doses of 20 and 40 mg/kg. In vivo, mouse primary ILC2s were stimulated with interleukin (IL)-33 and mouse RAW264.7 macrophages were stimulated with IL-4 and IL-13 to establish the cell models. Cells were treated with calycosin at doses of 5 and 10 µM. RESULTS: In vivo, we observed significantly reduced numbers of eosinophils, neutrophils, monocyte macrophages and lymphocytes in the bronchoalveolar lavage fluid (BALF) of OVA-exposed mice with 40 mg/kg calycosin. Histopathological assessment showed that calycosin inhibited the airway inflammation and remodeling caused by OVA. Calycosin markedly decreased the up-regulated IL-4, IL-5, IL-13, IL-33, and suppression tumorigenicity 2 (ST2) induced by OVA in BALF and/or lung tissues of asthmatic mice. Calycosin repressed the augment of arginase 1 (ARG1), IL-10, chitinase-like 3 (YM1) and mannose receptor C-type 1 (MRC1) levels in the lung tissues of asthmatic mice. In vivo, calycosin inhibited the IL-33-induced activation as well as the increase of IL-4, IL-5, IL-13 and ST2 in ILC2s. Calycosin also repressed the increase of ARG1, IL-10, YM1 and MRC1 induced by IL-4 and IL-13 in RAW264.7 macrophages. In addition, we found that these changes were more significant in 40 mg/kg calycosin treatment than 20 mg/kg calycosin. CONCLUSIONS: Collectively, this study showed that calycosin might attenuate OVA-induced airway inflammation and remodeling in asthmatic mice via preventing ILC2 activation and macrophage M2 polarization. Our study might contribute to further study of asthmatic therapy.

15.
Front Oncol ; 14: 1376515, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38651149

RESUMO

Background: The role of drug repositioning in the treatment of ovarian cancer has received increasing attention. Although promising results have been achieved, there are also major controversies. Methods: In this study, we conducted a drug-target Mendelian randomisation (MR) analysis to systematically investigate the reported effects and relevance of traditional drugs in the treatment of ovarian cancer. The inverse-variance weighted (IVW) method was used in the main analysis to estimate the causal effect. Several MR methods were used simultaneously to test the robustness of the results. Results: By screening 31 drugs with 110 targets, FNTA, HSPA5, NEU1, CCND1, CASP1, CASP3 were negatively correlated with ovarian cancer, and HMGCR, PLA2G4A, ITGAL, PTGS1, FNTB were positively correlated with ovarian cancer. Conclusion: Statins (HMGCR blockers), lonafarnib (farnesyltransferase inhibitors), the anti-inflammatory drug aspirin, and the anti-malarial drug adiponectin all have potential therapeutic roles in ovarian cancer treatment.

16.
Sci Rep ; 14(1): 9306, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654059

RESUMO

In this paper, a double-layer patterned graphene-based frequency-selective absorber (DGFSA) is proposed as a means of reducing an antenna's radar cross-section (RCS) while simultaneously increasing its gain. The antenna consists of a patch antenna with Multi-Graphene Frequency Selective Absorber (MGFSA) mounted on top. The DGFSA consists of double-layer patterned graphene and a band-pass frequency selective surface (FSS). Two patterned graphene lossy layers with different square resistances are used, which broaden the electromagnetic (EM) wave absorption bandwidth of the DGFSA, thus greatly reducing the out-band monostatic RCSs of the patch antenna. Meanwhile, due to the quasi-Fabry-Perot (F-P) effect, the gain of the proposed antenna is enhanced by 2.4 dB. Additionally, the low-RCS antenna reduces the monostatic RCS from 1.32 to 17 GHz under y-polarization and from 1.4 to 16.8 GHz under x-polarization, respectively. Furthermore, a decrease in the bistatic RCS is accomplished. Results from simulations and measurements match up nicely, which means the antenna we proposed has a good application on the stealth platform.

17.
Int J Rheum Dis ; 27(4): e15147, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38644732

RESUMO

Gout is a chronic metabolic and immune disease, and its specific pathogenesis is still unclear. When the serum uric acid exceeds its saturation in the blood or tissue fluid, it is converted to monosodium urate crystals, which lead to acute arthritis of varying degrees, urinary stones, or irreversible peripheral joint damage, and in severe cases, impairment of vital organ function. Gout flare is a clinically significant state of acute inflammation in gout. The current treatment is mostly anti-inflammatory analgesics, which have numerous side effects with limited treatment methods. Gout pathogenesis involves many aspects. Therefore, exploring gout pathogenesis from multiple perspectives is conducive to identifying more therapeutic targets and providing safer and more effective alternative treatment options for patients with gout flare. Thus, this article is of great significance for further exploring the pathogenesis of gout. The author summarizes the pathogenesis of gout from four aspects: signaling pathways, inflammatory factors, intestinal flora, and programmed cell death, focusing on exploring more new therapeutic targets.


Assuntos
Microbioma Gastrointestinal , Supressores da Gota , Gota , Transdução de Sinais , Ácido Úrico , Humanos , Gota/tratamento farmacológico , Ácido Úrico/sangue , Ácido Úrico/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Supressores da Gota/uso terapêutico , Mediadores da Inflamação/metabolismo , Animais , Anti-Inflamatórios/uso terapêutico
18.
PLoS Pathog ; 20(4): e1012163, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38648214

RESUMO

Virus discovery by genomics and metagenomics empowered studies of viromes, facilitated characterization of pathogen epidemiology, and redefined our understanding of the natural genetic diversity of viruses with profound functional and structural implications. Here we employed a data-driven virus discovery approach that directly queries unprocessed sequencing data in a highly parallelized way and involves a targeted viral genome assembly strategy in a wide range of sequence similarity. By screening more than 269,000 datasets of numerous authors from the Sequence Read Archive and using two metrics that quantitatively assess assembly quality, we discovered 40 nidoviruses from six virus families whose members infect vertebrate hosts. They form 13 and 32 putative viral subfamilies and genera, respectively, and include 11 coronaviruses with bisegmented genomes from fishes and amphibians, a giant 36.1 kilobase coronavirus genome with a duplicated spike glycoprotein (S) gene, 11 tobaniviruses and 17 additional corona-, arteri-, cremega-, nanhypo- and nangoshaviruses. Genome segmentation emerged in a single evolutionary event in the monophyletic lineage encompassing the subfamily Pitovirinae. We recovered the bisegmented genome sequences of two coronaviruses from RNA samples of 69 infected fishes and validated the presence of poly(A) tails at both segments using 3'RACE PCR and subsequent Sanger sequencing. We report a genetic linkage between accessory and structural proteins whose phylogenetic relationships and evolutionary distances are incongruent with the phylogeny of replicase proteins. We rationalize these observations in a model of inter-family S recombination involving at least five ancestral corona- and tobaniviruses of aquatic hosts. In support of this model, we describe an individual fish co-infected with members from the families Coronaviridae and Tobaniviridae. Our results expand the scale of the known extraordinary evolutionary plasticity in nidoviral genome architecture and call for revisiting fundamentals of genome expression, virus particle biology, host range and ecology of vertebrate nidoviruses.

19.
Food Funct ; 15(8): 4575-4585, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38587267

RESUMO

Previous studies have shown that vitamin C (VC), an essential vitamin for the human body, can promote the differentiation of muscle satellite cells (MuSCs) in vitro and play an important role in skeletal muscle post-injury regeneration. However, the molecular mechanism of VC regulating MuSC proliferation has not been elucidated. In this study, the role of VC in promoting MuSC proliferation and its molecular mechanism were explored using cell molecular biology and animal experiments. The results showed that VC accelerates the progress of skeletal muscle post-injury regeneration by promoting MuSC proliferation in vivo. VC can also promote skeletal muscle regeneration in the case of atrophy. Using the C2C12 myoblast murine cell line, we observed that VC also stimulated cell proliferation. In addition, after an in vitro study establishing the occurrence of a physical interaction between VC and Pax7, we observed that VC also upregulated the total and nuclear Pax7 protein levels. This mechanism increased the expression of Myf5 (Myogenic Factor 5), a Pax7 target gene. This study establishes a theoretical foundation for understanding the regulatory mechanisms underlying VC-mediated MuSC proliferation and skeletal muscle regeneration. Moreover, it develops the application of VC in animal muscle nutritional supplements and treatment of skeletal muscle-related diseases.


Assuntos
Ácido Ascórbico , Proliferação de Células , Músculo Esquelético , Mioblastos , Fator de Transcrição PAX7 , Regeneração , Animais , Fator de Transcrição PAX7/metabolismo , Fator de Transcrição PAX7/genética , Camundongos , Proliferação de Células/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Regeneração/efeitos dos fármacos , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo , Ácido Ascórbico/farmacologia , Linhagem Celular , Masculino , Camundongos Endogâmicos C57BL , Células Satélites de Músculo Esquelético/metabolismo , Células Satélites de Músculo Esquelético/efeitos dos fármacos , Fator Regulador Miogênico 5/metabolismo , Fator Regulador Miogênico 5/genética
20.
ACS Omega ; 9(14): 16676-16686, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38617668

RESUMO

Oxaliplatin (Oxa) is a commonly used chemotherapy drug in the treatment of gastric cancer, but its toxic side effects and drug resistance after long-term use have seriously limited its efficacy. Loading chemotherapy drugs with nanomaterials and delivering them to the tumor site are common ways to overcome the above problems. However, nanomaterials as carriers do not have therapeutic functions on their own, and the effect of single chemotherapy is relatively limited, so there is still room for progress in related research. Herein, we construct Oxa@Mil-100(Fe) nanocomposites by loading Oxa with a metal-organic framework (MOF) Mil-100(Fe) with high biocompatibility and a large specific surface area. The pore structure of Mil-100(Fe) is conducive to a large amount of Oxa loading with a drug-loading rate of up to 27.2%. Oxa@Mil-100(Fe) is responsive to the tumor microenvironment (TME) and can release Oxa and Fe3+ under external stimulation. On the one hand, Oxa can inhibit the synthesis of DNA and induce the apoptosis of gastric cancer cells. On the other hand, Fe3+ can clear overexpressed glutathione (GSH) in TME and be reduced to Fe2+, inhibiting the activity of glutathione peroxidase 4 (GPX4), leading to the accumulation of intracellular lipid peroxides (LPO), and at the same time releasing a large number of reactive oxygen species (ROS) through the Fenton reaction, inducing ferroptosis in gastric cancer cells. With the combination of apoptosis and ferroptosis, Oxa@Mil-100(Fe) shows a good therapeutic effect, and the killing effect on gastric cancer cells is obvious. In a nude mouse model of subcutaneous tumor transplantation, Oxa@Mil-100(Fe) shows a significant inhibitory effect on tumor growth, with an inhibition rate of nearly 60%. In addition to its excellent antitumor activity, Oxa@Mil-100(Fe) has no obvious toxic or side effects. This study provides a new idea and method for the combined treatment of gastric cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...